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Abstract. We have calculated the admittance of a two-dimensional quantum point contact
(QPC) using a novel variant of the Wigner distribution function (WDF) formalism. In
the semiclassical approximation, a Boltzmann-like equation is derived for thepartial WDF
describing both propagating and non-propagating electron modes in an effective potential
generated by the adiabatic QPC. We show that this quantum kinetic approach leads to the
well known stepwise behaviour of the real part of the admittance (the conductance), and of the
imaginary part of the admittance (the emittance), in agreement with the latest results derived by
Christen and B̈uttiker, which is determined by the number of propagating electron modes.

It is shown that the emittance is sensitive to the geometry of the QPC, and can be
controlled by the gate voltage. We have established that the emittance has contributions
corresponding to both quantum inductance and quantum capacitance. Stepwise oscillations in the
quantum inductance are determined by the harmonic mean of the velocities for the propagating
modes, whereas the quantum capacitance is a significant mesoscopic manifestation of the non-
propagating (reflecting) modes.

1. Introduction

Recent technological progress in manufacturing small-scale solid-state structures has made
possible the fabrication of devices involving two-dimensional electronic systems (2DES) in
the quantum ballistic regime. One particular system that has attracted considerable attention
is the quantum point contact (QPC) (see, e.g. [1–21]), which is fabricated by putting a split
gate on top of a GaAs–AlGaAs heterostructure, thereby creating a narrow constriction
in a two-dimensional electron gas (2DEG). Since in the ballistic regime the electrons
do not experience any collisions, propagation through the point contact is analogous to
propagation of the electromagnetic wave through a waveguide. The width of the QPC,
which is controlled by the gate voltage, can be of the same order of magnitude as the Fermi
wavelength and it governs the number of modes that can propagate through the constriction.

In QPC systems several experimental investigations [2–8] have demonstrated quantum
coherent phenomena, including quantization of the d.c. conductance versus the gate voltage
(or the number of propagating modes through the QPC). The theory of this phenomenon
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[1, 9–11] explains the d.c. conductance quantization as a consequence of adiabatic transit
of an electron wave through the QPC with smooth boundaries. In an adiabatic geometry
(see figure 1), which is smooth on the scale of the Fermi wavelength, the longitudinal and
transverse motion of electrons can be (approximately) separated in the Schrödinger equation
[1, 10]. In this case the number of transverse quantization modes is an adiabatic invariant,
and the transverse energy plays the role of potential energy for the one-dimensional (1D)
longitudinal motion of each mode. Depending on whether the total energy of a given
electron state is greater or less than the effective potential energy of a given mode, the
mode is propagating or non-propagating (see figure 2).

To date both experimental and theoretical studies of QPCs have been devoted mainly
to investigations of the d.c. conductance and the d.c. transport. It is clear, however, that
the investigation of thea.c. transportcan provide additional information, since a finite
frequency introduces a new time scale and may reveal qualitatively new effects, particularly
if the new time scale is of the order of other characteristic times of the system. The
a.c. conductance has been considered by Büttiker et al [14–21], who established that the
a.c. transport is described by the a.c. admittanceY = 1/Z = G − iωE at frequencyω,
whereZ is the impedance. The real part of the a.c. admittance,G, is the conductance,
and the imaginary part ofY , which is proportional toE , was first introduced by B̈uttiker
[17] as theemittance. In papers [14–21], the general expressions for the electrochemical
capacitance and for the displacement current were derived, and the step-like behaviour of
the QPC emittance in synchronism with the conductance steps, was established. Christen
and B̈uttiker [19] also discussed the low-frequency QPC emittance of the quantized Hall
conductors, and in [20] the authors used the scattering approach for the investigation of the
nonlinear current–voltage characteristic of mesoscopic conductors. In papers [14–21], the
emittance was expressed in terms of the geometric capacitance, transmission probability,
and the densities of states of the ‘mesoscopic capacitor plates’ [18]. The approach used
in [18] takes the Coulomb interaction into account self-consistently by considering two
contributions to the displacement charge—one part which neglects screening is determined
by the kinetic contribution, a second part corresponds to a screening charge which is due
to the shifts of the band bottoms.

In [22] the authors considered the frequency dependence of admittance for a two-
dimensional quantum wire, using a current conservation formalism. It was shown in [22]
that the correction to the d.c. conductance (in the low-frequency regime) due to a time-
dependent potential was related to the local partial density of states, and this correction
was calculated numerically. The authors of [23–26] considered the a.c. kinetic response
of the resonant tunnel junction (see also [27] where the time-dependent transport through
resonant tunnelling systems was considered). In particular, in [23] (see also references
therein) the Wigner distribution function approach was used to calculate the a.c. transport
through the time-periodic quantum-well resonant-tunnelling diode. The results derived in
[23] were based on the ‘numerically exact’ calculations of the time evolution of the Wigner
distribution function, and therefore were characteristically agreeable with the results based
on the corresponding time-dependent Schrödinger equation.

In the present paper we extend the studies of the response of a QPC to an a.c. field by
developing a simple method, based on the Wigner distribution function (WDF) formalism
[28, 29], for calculating the transport characteristics. Our approach allows us to represent the
emittance in terms of the capacitance and the inductance, which are expressed in an explicit
form through the microscopic characteristics. The effectiveness of the WDF approach to the
modelling of small mesoscopic devices was demonstrated in [30, 31]. In section 2, using
the assumption of adiabaticity, we derive a Boltzmann-like quantum kinetic equation for a
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Figure 1. The geometry of the quantum point contact. The width is denoted by 2d(x), the
narrowest width is 2d0, and the effective length is 2̃L.

partial WDF describing transport in the quantum ballistic constriction. This equation allows
us to treat the 2DES in a QPC in terms of classical trajectories for the effective 1D motion.
We assume that the local self-consistant electric field in the QPC is known. Generally, this
field can be found from the Poisson equation. However, in the low-frequency approximation
considered in this paper (when the characteristic time period of the electric field is much
smaller then the characterestic time of the electron’s flow through the QPC), only the voltage
determines the a.c. current through the QPC. In this approximation only the quantum
capacitance depends on the shape of the electric field in the QPC. This approximation is
well known and widely used. At the same time, this simplification allows us to concentrate
our attention on the peculiarities connected with the developed approach, and on the new
effects such as the contribution of inductance into the emittance, and explicit expressions
for the parameters and characteristics of the system.

In section 3 we demonstrate how the a.c. admittance of the QPC can be calculated from
the propagating and non-propagating (reflected) electron modes. Our approach recovers
the quantized behaviour as a function of gate voltage of the real part of the admittance
(the conductance), consistent with previous calculations [1, 10] using the Landauer formula
[32]. Our approach also allows us to demonstrate that the emittanceE has a negative part,
which is a quantum inductance, to which all the propagating electron modes contribute and
whose value is determined by the harmonic mean of the electron velocities in the quantized
electron modes. The non-propagating electron modes determine the positive contribution to
the emittanceE , which is a quantum capacitance, and which depends on a geometrical form
of the QPC as controlled by the gate voltage. The conclusions are outlined in section 4.

2. Kinetic equations in a quantum ballistic constriction

To find the conductivity of a 2DES in a QPC form (see figure 1), taking into account
both frequency dependence and spatial dispersion, we will apply the approach based on the
Wigner distribution function [28, 29],

fWp (r) =
∫

dr′ Tr

{
ρ̂ exp

[
− i

h̄

(
p+ e

c
A(r)

)
r′
]
9+(r − r′/2)9(r + r′/2)

}
. (1)
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Figure 2. The plane of phase trajectories for one-dimensional motion determined by the
conservation of the integrals of motion. The heavy lines are separatrices that separate the
propagating modes (regions 1 and 2) and non-propagating (reflecting) modes (regions 3 and 4).

Here ρ̂ is the statistical operator of the system;9+(r) and9(r) are, respectively, the
Fermi operators of the creation and annihilation of particles at the pointr, andA is the
vector potential of the electromagnetic field. When the characteristic scale of the spatial
inhomogeneity exceeds both the radius of interaction among the particles and the electron’s
de Broglie wavelength, the kinetic equation for the WDF (1) assumes a form equivalent to
the classical kinetic equation [29],

∂f Wp

∂t
+ v ∂f

W
p

∂r
+ e

{
E + 1

c
[v,B]

}
∂f Wp

∂p
= Î {fWp } (2)

where as usualE andB are the electric and magnetic fields, ande is the charge and
v the velocity of conduction electrons. Equation (2) is valid for the extended (in thex–
y-plane) 2DES, when the typical scales of the inhomogeneity (k−1, d) are much smaller
than the characteristic distance between the particlesn−1/2: k, 1/d � n−1/2, wherek−1 is
the wavelength of the electromagnetic field,d is a characteristic geometrical scale of the
system, andn is the density of the 2DEG. The characteristic distance between the particles
is ∼ n−1/2 due to the weak screening in the 2DEG.

The collision integral,Î
{
fWp

}
, in equation (2), differs essentially from the classical

collision integral, since the quantum transitions included inÎ
{
fWp

}
reflect the character

of the particle statistics and the distinction of the WDF from the classical one [29]. The
equilibrium WDF sets the collision integral̂I

{
fWp

}
to zero.

Using the definition of the WDF, we can express the charge densityρ and the current
densityj, respectively, as [28, 29],

ρ(t, r) = 2e

(2πh̄)2

∫
d2p fWp (r) (3)

j(t, r) = 2e

(2πh̄)2

∫
d2pvfWp (r). (4)

Despite the evident analogy with the classical distribution function, it is well known
that the WDF does not have an interpretation as the probability density, since it can take
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both positive and negative values, but the integrated values shown in equations (3) and (4)
have the usual physical meanings.

For a finite system, when a 2DEG is located in a bounded region (see figure 1)
characterized by distancesd of the order of the Fermi wavelength, the left-hand side of
the kinetic equation (2) changes its form. Using a standard procedure [28, 29], one can
obtain the kinetic equation for the WDF in the 2DES within the strip-like restricted region
|y| < d(x), d(x) = constant, which can be written in the form

∂f Wp

∂t
+ v ∂f

W
p

∂r
+ e

{
E + 1

c
[v,B]

}
∂f Wp

∂p
+ 4sgn(y)

mπh̄

×
∫ ∞
−∞

dp′y p
′
y cos

[
2(py − p′y)

h̄
(d − |y|)

]
fWpx,p′y

= Î {fWp } (5)

where sgn(y) is the sign function. The integral term on the left-hand side of equation (5)
arises from the transverse quantization. The presence of this term precludes the naive
application of the classical treatment, based on the trajectories, for the solution of the kinetic
equation (5) for the WDF. Note that the Boltzmann-like equation (2) can be used in the
infinite system when the characteristic size of the inhomogeneities due to the electromagnetic
field significantly exceeds the electron de Broglie wavelength. In this case, the integral term
in equation (5) vanishes, and (5) transforms into (2).

If d(x) 6= constant, the kinetic equation for the WDF assumes an even more complicated
form. To overcome these difficulties, we will invoke theadiabaticalassumption [1] for the
structure of the QPC shown in figure 1. Explicitly, we shall assume that the constriction is
sufficiently long and smooth, the criterion

d ′(x) ' d(x)/L̃� 1

is met (where 2̃L is the length of the constriction), and that the transport is adiabatic. With
this assumption, which has been discussed and analysed in [1, 10], the variables in the
Schr̈odinger equation can be separated, and the eigen-wavefunction can be written in the
form,

ψn(x, y) = ψn(x)8n[y, d(x)] (6)

where the transverse wavefunction

8n(y) = 1√
d(x)

sin

{
πn[y + d(x)]

2d(x)

}
θ [d2(x)− y2] (7)

should satisfy the boundary conditions

8n(y)|y=±d(x) = 0 (8)

andθ(x) is the Heaviside single-step function.
One can then derive an effective Hamiltonian for the longitudinal wavefunctionψn(x)

as

Ĥ = − h̄
2

2m
∂2
xx + εn(x)+ eφ(x). (9)

In (9) φ(x, y) is an electric potential, andφ(x) is the averaged electric potential with respect
to the transverse coordinatey,

φ(x) = 1

2d(x)

∫ d

−d
dy φ(x, y).
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The electric potentialφ(x, y) is assumed to be a smoothly varying function of the transverse
coordinatey within the constriction region|y| < d(x). Due to the transverse quantization,
the energy of the transverse motionεn(x) in the Hamiltonian (9) has the form

εn(x) = π2n2h̄2

8md2(x)
. (10)

With our assumptions, the transverse quantum numbern is an adiabatic integral of
motion. Hence we can consider the motion of electrons in the QPC as for a set of effective
1D electron systems enumerated byn. Each effective electron system is located in both
the potentialεn(x) and the self-consistent electrical potentialφ(x). We can introduce the
partial WDF (PWDF) as

fWn (x, px) =
∫

dx ′ exp

(
− ipxx ′

h̄

)
Tr ρ̂9+n (x − x ′/2)9n(x + x ′/2). (11)

Using (11), we can represent the WDF in the form

f Wp (r) =
∞∑
n=1

fWn (x, px)

∫ ∞
−∞

dy ′ exp

(
− ipyy ′

h̄

)
8n,x(y − y ′/2)8n,x(y + y ′/2). (12)

We can derive the equation for the PWDF (11) with the use of the Wigner transformation
[28, 29]:

∂f Wn

∂t
+ vx ∂f

W
n

∂x
+
[
−∂εn(x)

∂x
+ eE(x)

]
∂f Wn

∂p
(x, p) = Î {fWp } (13)

wherep ≡ px and

E(x) = −∂φ(x)
∂x

.

In terms of the PWDF the non-equilibrium charge density and current density can be
defined as

ρ(x, y) =
∞∑
n=1

ρn(x)8
2
n(y) (14)

j (x, y) =
∞∑
n=1

jn(x)8
2
n(y) (15)

whereρn(x) andjn(x) are the partial charge and current densities:

ρn(x) = e

πh̄

∫ ∞
−∞

dp[fWn (x, p)− fW(0)n (x, p)] (16)

jn(x) = e

πh̄m

∫ ∞
−∞

dp pfWn (x, p). (17)

In (16), fW(0)n (x, p) is the equilibrium PWDF.
The motivation for introducing the PWDF is now clear. In contrast to equation (6), the

kinetic equation (13) describing for the PWDFdoeshave the form of a classical kinetic
equation in the presence of an effective potentialεn(x). Hence the solution of this equation
can be described by the characteristics, i.e. by the classical trajectories.

The formalism used in this paper is based on the assumption that the kinetic equation
for the WDF can also involve the collision integral. It is well known (see, e.g. [29]) that
this can be realized as crystal periodicity violation, which is a source of electron scattering
which does not distort (or distort weakly) the electron spectrum of the ideal crystal. In
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this way a weak disorder can be taken into account within the WDF formalism. Certainly,
the impurity scattering in a form of the collision integral for the WDF must be treated
self-consistently using, for example, the self-consistent Born approximation, which is the
simplest method that is free from divergences. In other words, the collision integral can be
described in terms of the relaxation frequency depending on the electron energy. It is clear,
that in the case when the current carriers have a high mobility, and if the frequencies of
the electromagnetic field are sufficiently high, the approximation for the collision integral
is justified. The forms of the electron–phonon and electron–impurity collision integrals are
too complicated [29]. However, we shall consider here the effects associated with the linear
response to the electric field. In this case, the WDF can be found in a linear approximation
with respect to the external electric fieldE. It is well known [29] that for a description of
the high-frequency effects (ω � ν) in a sample with a high electron mobility, the collision
integral can be treated in terms of the momentum relaxation frequencyν, while the mean
free path time is 1/ν.

In other words, the collision integral in (13) includes quantum transitions [29] and
intermixing of the different electron modes (the different PWDF). In the following, we
assume a quasi-ballistic regime of transport through the QPC, and we will approximate the
collision integral by a single momentum relaxation frequency,

În{fWp } = −ν[fWn (x, p)− fW(0)n ] (18)

wherefW(0)n is the equilibrium PWDF. The equilibrium distribution functionfW(0)n within
the adiabatic approximation is given by

f W(0)n (x, p) = nF
{
p2/2m+ εn(x)− µ

T

}
nF (x) = (1+ ex)−1. (19)

The functionnF (x) is the Fermi function with the effective chemical potentialµ − εn(x),
whereµ is the equilibrium chemical potential of the 2DEG. The effective chemical potential
varies smoothly as a function of the longitudinal coordinatex. In this paper we are interested
in the linear response, so we expand the PWDF about its equilibrium form

fWn (x, p) = fW(0)n (x, p)+ fn(x, p). (20)

The kinetic equation linearized in the electric field,E(x, t) = E(x) exp(−iωt), becomes

p

m

∂fn

∂x
− ∂εn(x)

∂x

∂fn

∂p
+ (ν − iω)fn = −eE ∂f

W(0)
n

∂p
. (21)

The natural method for solving the kinetic equation (21) is the method of characteristics.
The characteristics of this equation are the phase trajectories of a 1D motion in the potential
εn(x), which is determined from the integral of motion,viz the total energyε:

ε = p2

2m
+ εn(x) = constant (22)

We will consider a reflection symmetric QPC, i.e.d(x) = d(−x). For this case the phase
portrait is shown in figure 2. The heavy lines in figure 2 denote theseparatrices, which
pass through the hyperbolic pointp = 0, x = 0 and separate the phase space into four
regions, within which four sets of phase trajectories exist.

The regions of propagating trajectories (ε > εn(0)) occupy the regions (see figure 2):

(1) ε > εn(0), p > 0 and (2) ε > εn(0), p < 0.

The regions of non-propagating (reflecting) trajectories (ε < εn(0)) occupy:

(3) ε < εn(0), x > 0 and (4) ε < εn(0), x < 0.
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Within each region, one can find the solution of the kinetic equation for the PWDF and
derive the general formula for the partial chargeρn and the current densitiesjn. Here we
consider the most interesting case, when the temperature is very low (T → 0, T � µ), so
that we have a clear separation between propagating (εn(0) < µ) and reflecting (εn(0) > µ)
channels.

For the ‘open’ (i.e. propagating) channels

ρn(x) = 2e2

h

1

vn(x)

∫ L

−L
dx ′ E(x ′)sgn(x − x ′) exp[iω∗τn(x, x ′)sgn(x − x ′)] (23)

jn(x) = 2e2

h

∫ L

−L
dx ′ E(x ′) exp[iω∗τn(x, x ′)sgn(x − x ′)] (24)

whereω∗ = ω + iν, vn(x) =
√
(2/m)[µ− εn(x)], and

τn(x, x
′) =

∫ x

x ′

dx ′′

vn(x ′′)
. (25)

For the closed channels (reflecting modes)

ρn(x) = 2e2

h

sgn(x)

vn(x)

∫ L

xn

dx ′E(x ′sgn(x)){sgn(|x| − x ′) exp[iω∗τn(|x|, x ′)

×sgn(|x| − x ′)] − exp[iω∗(τn(|x|, xn)+ τn(x ′, xn))]}θ(|x| − xn) (26)

jn(x) = 2e2

h

∫ L

xn

dx ′ E(x ′sgn(x)){exp[iω∗τn(|x|, x ′)sgn(|x| − x ′)]

− exp[iω∗(τn(|x|, xn)+ τn(x ′, xn))]}θ(|x| − xn). (27)

Here xn is the absolute value of the critical (turning) point, which is determined by the
condition

εn(xn) = µ. (28)

From equations (23), (24) and (26), (27), it is apparent that the transport through a QPC
is described by highly non-local (integral) operators. This suggests that the charge and
current densities at a given pointx are influenced by the electrical field within the whole
conductor. Thus, the PWDF formalism allowed us to derive the charge and the current
densities as non-local operators with respect to the electric field.

3. The admittance of the QPC

Our formulation of the kinetic equation for the PWDF allows us to describe the adiabatic
transport through a QPC. Using equations (23), (24) and (26), (27), we can calculate the
charge and current densities in the QPC, once the field distribution within the QPC is given.
Of particular experimental interest is the calculation of the frequency dependence of the
admittance of the QPC, the behaviour of which reveals more detailed information than any
static characteristics.

It is well known that the static conductance is fully specified by the potential difference
(bias voltage) between the right and left reservoirs, whereas the detailed electrical potential
profile does not influence it significantly [1]. This result was derived using the Landauer
formalism [10, 32], when the conductance was defined by the matrix of the transmission
coefficients of the electrons corresponding to the different propagating channels. We can
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readily show that this result also follows immediately from our PWDF approach. In the
ballistic regime, when

L� l (29)

(2L is the distance between the reservoirs,l is the mean free path), forω, ν → 0, we find
for the propagating modes (open channels)

jn = 2e2

h
V V =

∫ L

−L
dx E(x) (30)

and for the non-propagating modes (closed channels)

jn = 0. (31)

Using equation (15), we obtain, for the total current flowing through the QBC, the result

I =
∫ ∞
−∞

dy j (y). (32)

Hence the static conductance assumes the familiar form [1]

G = I

V
= 2e2

h
N (33)

whereN is the number of open channels:

N =
[

2kF d(0)

π

]
h̄kF =

√
2mµ. (34)

Here the brackets [· · ·] stand for the integral part of the enclosed expression. From these
equations it is clear that the static conductance does not depend on the details of the smooth
function,d(x).

More generally, we can use the formalism of the PWDF to calculate the admittance
at the frequencyω. From formulae (24)–(28) one can see that the partial currentjn is a
function of the longitudinal coordinatex at ω 6= 0. The continuity equation

divj + ∂ρ
∂t
= 0 (35)

in the QPC atω 6= 0 takes the form
∞∑
n=1

∂

∂x

{
jn − iω

∫ x

−L
dx ′ ρn(x ′)

}
= ∂

∂x
{Itot } = 0 (36)

where

Itot =
∞∑
n=1

{
jn − iω

∫ x

−L
dx ′ ρn(x ′)

}
.

Note that the total currentItot , which includes the current density
∑∞

n=1 jn(x) and
displacement current−iω

∑∞
n=1

∫ x
−L dx ′ ρn(x ′) is independent of the longitudinal coordinate

x. From the form of equation (36) it is easy to see that the displacement current vanishes
within the left reservoir, so the total current is

Itot =
∞∑
n=1

jn(−L) (37)

and the admittance can be determined as

Y = Itot

V
= 1

V

∞∑
n=1

jn(−L). (38)
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Thus, outside the QPC region,|x| > L, where−L andL are the beginning and the end of
the constriction (−L < x < L), the displacment current vanishes in the reservoirs; the total
current is determined by equation (37), and the admittance is determined by equation (38).

In the general case, we need to determine the fieldE(x) within the QPC from the
Maxwell equations and afterwards calculate the admittance. Here we consider the long-
wavelength approximation, in which

v∗n � ωLn. (39)

Herev∗n is the typical velocity for the electrons of thenth channel andLn characterizes the
length of a region for each channel. For the open (propagating) modesLn is the distance
between the reservoirs (Ln ∼ 2L) and

v∗n = vn(0). (40)

For non-propagating modes (closed channels),Ln is twice the distance between the turning
point (28) and the nearest reservoir (Ln ∼ 2(L− xn)). The typical velocity in this case is

v∗n =
2vF
L̃

√
xn(L− xn) vF =

√
2µ

m
(41)

where 2̃L is the length of the constriction.
Condition (39) implies that the field changes only slightly during the time that it takes

an electron to travel through the QPC. Hence equation (39) is the condition for weak
frequency dispersion of the conductivity. To calculate the current of the propagating modes
(open channels), we can approximate the velocityvn as

vn(x) ' vn(0) = v∗n (42)

and for the reflecting modes

vn(x) ' v∗n
√
|x| − xn
L− xn . (43)

We approximate the form of the QPC (as in [12]):

d(x) = d0 exp[(x/L̃)2]. (44)

Using this approximation, we find for the open channels

jn(−L) = 2e2

h

(
1+ i

ωL

v∗n

)
V (45)

and for the closed channels

jn(−L) = −iω
8e2

h

(L− xn)
v∗n

∫ L

xn

dx ′ E(x ′)

√
x ′ − xn
L− xn . (46)

Consistent with our choice of a reflection symmetricd(x), let us assume that the electric
field inside the QPC is reflection symmetric,E(x) = E(−x). In this case, the contribution
of the open channels is determined by the total voltageV and is independent of the detailed
profile of the electrical potential inside the QPC. Thus, we can write the admittance in the
form

Y = G− iωE (47)
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whereG = (2e2/h)N is the static conductance. The emittanceE of the QPC is given by
the expression

E = −G L

v(o)
+ 16

3

e2

h

N+Ñ∑
n=N+1

ξn

v∗n
(L− xn). (48)

Herev(o) is the harmonic mean of the velocitiesv∗n in the open channels (42):

1

v(o)
= 1

N

N∑
n=1

1

v∗n
. (49)

The integerÑ determines the number of closed channels:

Ñ =
[

2kF d0

π
exp[(L/L̃)2]

]
−N (50)

with 2L being the distance between the reservoirs. The discrete valueξn characterizes the
relative bias of voltage in the region(xn, L) filled with the electrons of thenth reflecting
channel:

ξn = 3

2

∫ L

xn

dx ′
E(x ′)
V

√
x ′ − xn
L− xn . (51)

From equation (48) it follows immediately that the contribution of the reflecting modes
to the emittanceE is positive, whereas the contribution of the propagating modes is negative.
This observation allows us to express our results concisely in terms of the equivalent circuit
shown in figure 3. The admittance of the circuit is

Y = G− iω(C −3G2/c2) (52)

with

ωC � G ω3� c2G−1.

The effective inductance in equation (52) is

3 = c2L

Gv(o)
(53)

and the effective capacitance is

C = 16

3

e2

h

N+Ñ∑
n=N+1

ξn

v∗n
(L− xn) (54)

whereξn is defined in (51).
Note that equation (52) coincides with the general expression for the emittance derived in

[18] (see equation (7) in [18]), where the emittance was expressed in terms of the geometric
capacitance, transmission probability, and the densities of states of the ‘mesoscopic capacitor
plates’. Our description has allowed us to represent the emittance in terms of the
inductance (53) and the capacitance (54), which are expressed in an explicit form through
the microscopic characteristics, such as the harmonic mean of the velocities of the open
channels (inductance), and the relative bias of voltage of the QPCξn (51), velocitiesv∗n,
and the values of the turning pointsxn (see (54)). It is easy to see that the capacitance (54)
and the inductance (53) demonstrate a stepwise behaviour as functions of the gate voltage.
This stepwise behaviour of the emittance, as was pointed out in [18], is in synchronism
with the conductance steps, and is determined by the number of open (or closed) channels
in the QPC.
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Figure 3. Equivalent circuit of the QPC.

We can readily show that the emittance is a stepwise function of the gate voltage. When
the gate voltage approaches a point for which 2kF d/π is integer, and one more mode opens
(or closes), the inductance and the capacitance in expressions (53) and (54) increase to
infinity.

In this case, condition (39) is violated, and the contribution of these points to the
admittance must be calculated separately. Let us analyse the asymptotic behaviour of the
emittance in this case. The approximation (42) and (43) is justified only if for all modes
the parameter

γn = (µ− εn(0))/εn(0)
is not too small. The situation whenγn becomes small for then0th mode (n0 = N ,N + 1)
means that the corresponding mode is near to the point where it transforms from propagating
to non-propagating, orvice versa. When |γN | � 1 (for an open channel), we find that in
inequality (39) and equation (49) the typical velocity forn = N is

v∗N ' vF
L

L̃

√
2

ln(4L2/L̃2|γN |)
. (55)

If |γN+1| � 1 (for a closed channel), then in inequality (39) and in equations (48) and
(53)

v∗N+1 '
16

3
vF
L

L̃

√
2

ln(4L2/L̃2|γN+1|)
. (56)

Hence the contribution of theN th mode to the inductance is

3N ' c2

G2

2e2

h

L̃

vF
√

2
ln

(
4L2

|γN |L̃2

)
(57)

and the contribution of the(N + 1)th mode to the capacitance is

CN+1 ' e2

h

L̃

vF
√

2
ln

(
4L2

|γN+1|L̃2

)
. (58)

If a channel opens (closes), andγn → 0, there can be a case of strong frequency and
spatial dispersion. Because of this, at these points the system cannot be treated in terms of
effective inductance and capacitance. (Note, that in equations (55)–(58), whenγn→ 0, the
modules|γN | and |γN+1| should be substituted by

√
γ 2
n + (L/l)2, wherel is the electron’s

mean free path in the ballistic quantum constriction,L/l � 1.)
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The emittance is described by parameters of a different nature. The inductance3 is
determined by the velocitiesvn for the open channels, and the capacitanceC is mainly
determined by the distribution of the electrical field as well as by the location of the turning
points (28). The mesoscopic emittance can be controlled by the gate voltage.

4. Conclusions

We have developed a new approach, based on a partial Wigner distribution function, to
analyse a.c. electron transport properties of a quantum point contact. Treating the quantum
ballistic constriction in the adiabatic approximation, we have derived a Boltzmann-like
equation for the partial Wigner distribution function in an effective potential brought about
by the quantized transverse modes. We have analysed this equation in terms of propagating
and reflecting trajectories in the quasiclassical approximation.

Our results establish that the a.c. electron transport depends directly on the number of
propagating and reflecting modes, and that certain features are sensitive to the form of the
distribution of the electric field in the QPC. In particular, the real part of the admittance
(the conductance) is determined by the number of propagating electron modes, and does not
depend on the spatial distribution of the electric field inside the QPC [1] . The imaginary
part of the admittance (the emittance) exhibits stepwise oscillations as a function of the gate
voltage and consists of two parts: the quantum inductance and the quantum capacitance. The
quantum inductance is determined by the harmonic mean of the velocities for the propagating
electron modes. The quantum mesoscopic capacitance is specified by the reflecting modes
that are very sensitive to the geometry of the QPC. The emittance can be controlled by the
gate voltage. Therefore, the measurements of the admittance can be more informative than
the measurements of the static conductance.

It is important to stress that the effective quantum inductance and capacitance,
and the equivalent circuit, are concepts valid within our linear-response, low-frequency
approximation. For the high-frequency case, and when new propagating and non-
propagating modes can appear or disappear, the frequency dispersion of the admittance
is more complicated than the linear one given by the equivalent circuit of equation (52).
This case must be considered using the self-consistent Maxwell equations for the electric
field in the QPC. We are presently investigating this problem.

In connection with this remark we note that in the present paper we have considered the
model of the QPC where along they-direction (see figure 1) the walls are considered
impenetrable (infinite potential barriers). Along thex-direction the potential changes
adiabatically according to the adiabatical model (see [1]). In a real semiconductor 2DEG
QPC the boundaries are created by the gate voltage. So, in this case the boundaries in the
y-direction can also be ‘smooth’. Analogously, both smooth and hard walls can also be
realized in 3D quantum micro-constrictions of various shapes (see, for example, [33, 34],
and references therein). In particular, the walls can be considered smooth in the presence
of a magnetic field [33].

The WDF method suggested in this paper can easily be generalized to a description for
both linear and nonlinear electron transport in 2D and 3D QPC and quantum wires taking
into consideration the effects of gates, namely when the boundaries are smooth with an
adiabatically varying shape. We are considering this problem at present.
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[16] Büttiker M 1995Nuovo Cimento110B 509
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